Dr. Christian Jelsch 

CNRS director of research

Work address: CRM2 – CNRS -  Université de Lorraine    

Faculté des Sciences et Technologies

Laboratoire Cristallographie Résonance Magnétique et Modélisations

BP 70239   54506 Vandoeuvre-les-Nancy Cedex   France

christian.jelsch@univ-lorraine.fr

Work experience:

2011-    CNRS Director of research at CRM2 laboratory.

            Cristallographie, Résonance Magnétique & Modelisations.

            Université de Lorraine. Nancy. France.

1996-2011        CNRS Researcher at LCM3B Laboratory (now CRM2).  Nancy.

                        Laboratoire Cristallographie, Modélisation Matériaux Minéraux & Biologiques.

 1995-96            Postdoctoral researcher at AFMB – CNRS -CNRS, Marseille. France

Architecture Fonction Molécules Biologiques

1993-95            Postdoctoral  researcher at Yale University, New Haven CT  USA.

Mol. Biol. Biophys. Dpt.   Laboratory of  Pr. T.A. Steitz.

Since 2018       Editor  at Journal of Molecular Structure, Elsevier.

Education and Qualifications

2001            Habilitation to Direct Research. University  Henri Poincaré. Nancy.

1989-93       Ph.D  Laboratory of  Structural Biology, CNRS Strasbourg. France.

1985-88       Engineer Ecole Centrale Paris. Chemical Engineering option.

1983-85      Preparatory School, Mathematics Sup & Spé. Strasbourg.

Publications

137           Articles in peer refereed journals

 4             Book articles

38             Hirsch-Index

4932          Citations

Scientific Interests

charge density analysis, crystallographic software, electron density database development, electrostatics, physical chemistry, crystallogenesis, crystal engineering, protein crystallography, enzyme catalysis, molecular recognition.

 

Selection of Main Publications.

  Vuković V, Leduc T, Jelić-Matošević Z, Didierjean C, Favier F, Guillot G, Jelsch C. (2021) A rush to explore protein-ligand electrostatic interaction energy with Charger. Acta Cryst D. 77. 1292-1304.

Leduc, T., Aubert, E., Espinosa, E., Jelsch, C., Iordache, C., & Guillot, B (2019). Polarization of Electron Density Databases of Transferable Multipolar Atoms. J Phys Chem A.  123, 7156−7170.

Fournier, B., Guillot, B., Lecomte, C., Escudero-Adán, E. C., & Jelsch, C. (2018). Acta Cryst A: , 74(3), 170-183. A method to estimate statistical errors of properties derived from charge-density modelling.

Jelsch C., Bibila Mayaya Bisseyou, Y.  2017, IUCr J 4, 158-174.   Atom interaction propensities of oxygenated chemical functions in crystal packings.

 Jelsch, C., Soudani, S., Ben Nasr C. J. (2015). IUCr J, 327-340.  Likelihood of atom–atom contacts in crystal structures of halogenated organic compounds. 66 citations.

Jelsch, C., Ejsmont C.  Huder, L.  IUCrJ  (2014). 1, 119-128. The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis.  220 citations

Ahmed M, Jelsch C, Guillot B, Lecomte C, Domagała S. Crystal Growth Design. 2013., 13, 315–325.  Relationship between stereochemistry and charge density in hydrogen bonds with oxygen acceptors.

Domagala S.,  Fournier B,  Liebschner D.,  Guillot B. and  Jelsch C  Acta Cryst. (2012). A68, 337-351. An improved experimental databank of transferable multipolar atom models - ELMAM2.  Construction details and applications.  95 citations.

Fournier B., Bendeif E.E., Guillot B., Podjarny A., Lecomte C. & Jelsch C. (2009). J. Am. Chem. Soc. 131, 10929–10941. Charge Density and Electrostatic Interactions of Fidarestat, an Inhibitor of Human Aldose Reductase. 53 citations.

Guillot B., Jelsch C., Podjarny A. & Lecomte C. (2008) Acta Cryst. D.  D64, 567-588. Charge density analysis of a protein structure at subatomic resolution: the human Aldose Reductase case. 78 citations.

Jelsch, C.,  Guillot, B., Lagoutte, A. & Lecomte, C., (2005). J. Appl. Cryst. 38, 38-54. Advances in Proteins and Small Molecules. Charge Density Refinement Methods using software MoPro. 305 citations.

Muzet M, Guillot B, Jelsch C & Lecomte C.  Proc. Natl. Acad. Sci. USA (2003), 100: 8742-8747.  On the Electrostatic Complementarity in a Human Aldose Reductase / NADP+ / Inhibitor Complex as derived from First-Principles Calculations and Ultra-High Resolution Crystallography. 108 citations.

Guillot B., Viry L., Guillot R., Lecomte C. & Jelsch C.  J. Applied Crystallography (2001). 34, 214-223. Refinement of proteins at subatomic resolution with  MOPRO.  175 citations.

Jelsch C., Teeter M.M.   Lamzin V., Pichon-Pesme V.,  Blessing R.H. & Lecomte C. Proc. Natl. Acad. Sci. USA. (2000) 97, 3171-3176. Accurate protein crystallography at ultra-high resolution: valence electron distribution in crambin.  

  Jelsch, C., Mourey L. Masson J.M. & Samama J.P. (1993) Proteins: Structure, Function, and Bioinformatics. 16, 364-383. "Crystal structure of Escherichia coli TEM1 β‐lactamase at 1.8 Å resolution."

Lecture 10: Christian Jelsch

 

 Charge Density  & Intermolecular Interactions


Christian Jelsch

 

 

Laboratoire Cristallographie Résonance Magnétique et Modélisations

CNRS & Université de Lorraine, CRM2.   54500,  Nancy, France.

E-mail:  christian.jelsch@univ-lorraine.fr

 Charge-density studies from single-crystal X-ray diffraction at ultra-high-resolution have become a powerful tool in modern crystallography to understand solid state properties of chemical compounds. To overcome a time-consuming process or an impossible experiment due to insufficient quality of the crystal diffraction, the molecular electron density can be reconstructed by using databases of multipolar atoms such as ELMAM2 (Domalaga et al., 2012), Invariom (Dittrich et al. 2013) and UBDB/MATTS (Bojarowski et al., 2022). This applies notably to biological macromolecules such as proteins and nucleic acids. This transferability approximation assumes however that the atomic electron density is not influenced by the surrounding atoms.  Within the framework of our software MoPro (Jelsch et al., 2005), the polarization of the transferred electron density by its immediate environment can now be accomplished using a database of anisotropic polarizabilities (Leduc et al., 2019). 

The electrostatic properties of molecules can be accurately computed from the multipolar description of atoms using the Hansen & Coppens (1978) model. We have found that the specific charge density of alcohols, phenols and carboxyl group does influence the stereochemistry of hydrogen bonds to oxygen acceptors (Ahmed et al., 2013). Electrostatic energy between molecules or between groups of atoms can be computed as the molecular charge density is considered as a summation over its constituting atoms.  

The numerical exact potential and multipole moment (nEP/MM) method initially implemented in VMoPro program is time-consuming since it performs a 3D integration to obtain the electrostatic energy at short interaction distances. Nguyen et al. (2018) reported a fully analytical computation of the electrostatic interaction energy (aEP/MM). This method performs much faster than nEP/MM (up to two orders of magnitude) and remains highly accurate. A new program library, Charger, contains an implementation of the aEP/MM method and is incorporated in the MoProViewer software (Vukovic et al., 2021). The protein glutathione transferase (GST) in complex with benzophenone ligands was studied due to the availability of both structural and thermodynamic data. The resulting analysis highlights the residues that stabilize the ligand but also those that hinder ligand binding from an electrostatic point of view.

The second part of the talk will be focused on the decomposition of the crystal contacts on the Hirshfeld surface between pairs of interacting chemical species which enables to derive a contact enrichment ratio (Jelsch et al., 2014, 2017). This descriptor yields information on the propensity of chemical species to interact with themselves and other species. The enrichment ratios are obtained by comparing the actual and equiprobable contacts and can be readily obtained with MoProViewer software, using the Hirshfeld surface analysis tool. Strong and weak hydrogen bonds appear generally enriched, depending on the context.

The electrostatic energy of contacts was also computed using a multipolar atom model and combined statistically to the contact enrichment ratios. The analyses suggest that hydrogen bonds are often the most enriched and attractive interactions and are a therefore a driving force in the crystal packing formation for organic molecules. The methodology also enables to compare different types of hydrogen bonds which are in competition within crystal packings. The behaviour of weaker interactions is less contrasted and will be discussed.

REFERENCES:

Ahmed, M., Jelsch, C., Guillot, B., Lecomte, C., & Domagała, S. (2013). Relationship between stereochemistry and charge density in hydrogen bonds with oxygen acceptors. Crystal growth & design, 13(1), 315-325.

Bojarowski, S. A., Gruza, B., Trzybiński, D., Kamiński, R., Hoser, A. A., Kumar, P., ... & Dominiak, P. M. (2022). New refinement strategies for pseudoatom databank-towards wider range of application.

Dittrich, B., Hübschle, C. B., Pröpper, K., Dietrich, F., Stolper, T., & Holstein, J. (2013). The generalized invariom database (GID). Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials69(2), 91-104.

Domagała, S., Fournier, B., Liebschner, D., Guillot, B., & Jelsch, C. (2012). An improved experimental databank of transferable multipolar atom models–ELMAM2. Construction details and applications. Acta Crystallographica Section A: Foundations of Crystallography68(3), 337-351.

Hansen, N. K., & Coppens, P. H. I. L. I. P. (1978). Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr. A34, 909-921.

Jelsch, C., Guillot, B., Lagoutte, A., & Lecomte, C. (2005). Advances in protein and small-molecule charge-density refinement methods using MoPro. Journal of applied crystallography, 38(1), 38-54.

Jelsch, C., Ejsmont, K., & Huder, L. (2014). The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ1(2), 119-128.

Jelsch, C., & Bibila Mayaya Bisseyou, Y. (2017). Atom interaction propensities of oxygenated chemical functions in crystal packings. IUCrJ, 4(2), 158-174.

Leduc, T., Aubert, E., Espinosa, E., Jelsch, C., Iordache, C., & Guillot, B. (2019). Polarization of Electron Density Databases of Transferable Multipolar Atoms. The Journal of Physical Chemistry A, 123, 7156-7170.

Nguyen, D., Kisiel, Z., & Volkov, A. (2018). Fast analytical evaluation of intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density. I. The Löwdin α-function method. Acta Crystallogr. A74, 524-536.

Vuković, V., Leduc, T., Jelić-Matošević, Z., Didierjean, C., Favier, F., Guillot, B., & Jelsch, C. (2021). A rush to explore protein–ligand electrostatic interaction energy with Charger. Acta Crystallogr D77. 1292-1304